Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Clin Med ; 12(6)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2261108

ABSTRACT

Coronavirus disease (COVID-19) is a respiratory disease, although arterial function involvement has been documented. We assess the impact of a post-acute COVID-19 rehabilitation program on endothelium-dependent vasodilation and arterial wall properties. We enrolled 60 convalescent patients from COVID-19 and one-month post-acute disease, who were randomized at a 1:1 ratio in a 3-month cardiopulmonary rehabilitation program (study group) or not (control group). Endothelium-dependent vasodilation was evaluated by flow-mediated dilation (FMD), and arterial wall properties were evaluated by carotid-femoral pulse wave velocity (cf-PWV) and augmentation index (AIx) at 1 month and at 4 months post-acute disease. FMD was significantly improved in both the study (6.2 ± 1.8% vs. 8.6 ± 2.4%, p < 0.001) and control groups (5.9 ± 2.2% vs. 6.6 ± 1.8%, p = 0.009), but the improvement was significantly higher in the study group (rehabilitation) (p < 0.001). PWV was improved in the study group (8.2 ± 1.3 m/s vs. 6.6 ± 1.0 m/s, p < 0.001) but not in the control group (8.9 ± 1.8 m/s vs. 8.8 ± 1.9 m/s, p = 0.74). Similarly, AIx was improved in the study group (25.9 ± 9.8% vs. 21.1 ± 9.3%, p < 0.001) but not in the control group (27.6 ± 9.2% vs. 26.2 ± 9.8 m/s, p = 0.15). Convalescent COVID-19 subjects of the study group (rehabilitation) with increased serum levels of circulating IL-6 had a greater reduction in FMD. Conclusively, a 3-month cardiopulmonary post-acute COVID-19 rehabilitation program improves recovery of endothelium-dependent vasodilation and arteriosclerosis.

2.
Heart Vessels ; 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2233943

ABSTRACT

Coronavirus disease-19 (COVID-19) has extended implications namely the long COVID-19 syndrome. We assessed over-time changes in left ventricular (LV) function, aortic stiffness, autonomic function, and ventricular-arterial coupling (VAC) in post-COVID-19 patients. We followed 34 post-COVID-19 subjects, up to 6 months post-hospital discharge. Subjects without COVID-19 served as control. We evaluated LV global longitudinal strain (LV-GLS), arterial stiffness [carotid-femoral pulse wave velocity (cf-PWV)], and heart rate variability -standard deviation of normal RR intervals (SDNN). VAC was estimated as the ratio of cf-PWV to LV-GLS. Post-COVID-19 individuals (1-month post-hospital discharge) presented with impaired LV-GLS [-18.4%(3.1) vs. -22.0%(2.7), P < 0.001], cf-PWV [12.1 m/s (3.2) vs. 9.6 m/s (1.9), P < 0.001], SDNN [111.3 ms (22.6) vs. 147.2 ms (14.0), P < 0.001], and VAC [-0.68 (0.22) vs. -0.44 (0.10), P < 0.001] compared to control. LV-GLS, SDNN, and VAC improved at the 6-month follow-up however they did not reach control levels. In post-COVID-19 subjects, SDNN and VAC were correlated at the 1-month (R = 0.499, P = 0.003) and 6-month (R = 0.372, P = 0.04) follow-up. Long COVID-19 syndrome was associated with impaired LV-GLS, SDNN, and VAC. Post-COVID-19 subjects presented with autonomic dysregulation associated with aortic stiffness, ventricular-arterial impairment, and LV dysfunction, even 6-months post-hospital discharge. These abnormalities may be related to the presence of long COVID-19 syndrome.

3.
Vascul Pharmacol ; 144: 106975, 2022 06.
Article in English | MEDLINE | ID: covidwho-2184357

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) is implicated by active endotheliitis, and cardiovascular morbidity. The long-COVID-19 syndrome implications in atherosclerosis have not been elucidated yet. We assessed the immediate, intermediate, and long-term effects of COVID-19 on endothelial function. METHODS: In this prospective cohort study, patients hospitalized for COVID-19 at the medical ward or Intensive Care Unit (ICU) were enrolled and followed up to 6 months post-hospital discharge. Medical history and laboratory examinations were performed while the endothelial function was assessed by brachial artery flow-mediated dilation (FMD). Comparison with propensity score-matched cohort (control group) was performed at the acute (upon hospital admission) and follow-up (1 and 6 months) stages. RESULTS: Seventy-three patients diagnosed with COVID-19 (37% admitted in ICU) were recruited. FMD was significantly (p < 0.001) impaired in the COVID-19 group (1.65 ± 2.31%) compared to the control (6.51 ± 2.91%). ICU-treated subjects presented significantly impaired (p = 0.001) FMD (0.48 ± 1.01%) compared to those treated in the medical ward (2.33 ± 2.57%). During hospitalization, FMD was inversely associated with Interleukin-6 and Troponin I (p < 0.05 for all). Although, a significant improvement in FMD was noted during the follow-up (acute: 1.75 ± 2.19% vs. 1 month: 4.23 ± 2.02%, vs. 6 months: 5.24 ± 1.62%; p = 0.001), FMD remained impaired compared to control (6.48 ± 3.08%) at 1 month (p < 0.001) and 6 months (p = 0.01) post-hospital discharge. CONCLUSION: COVID-19 patients develop a notable endothelial dysfunction, which is progressively improved over a 6-month follow-up but remains impaired compared to healthy controls subjects. Whether chronic dysregulation of endothelial function following COVID-19 could be accompanied by a residual risk for cardiovascular and thrombotic events merits further research.


Subject(s)
COVID-19 , COVID-19/complications , Cohort Studies , Endothelium, Vascular , Humans , Prospective Studies , Vasodilation/physiology , Post-Acute COVID-19 Syndrome
4.
Curr Pharm Des ; 28(39): 3225-3230, 2022.
Article in English | MEDLINE | ID: covidwho-2089588

ABSTRACT

BACKGROUND: Coronavirus Disease-19 (COVID-19) is implicated in endotheliitis, which adversely affects cardiovascular events. The impact of vaccination with COVID-19 on the clinical outcome of patients is documented. OBJECTIVE: To evaluate the impact of vaccination with COVID-19 on the severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection-related endothelial impairment. METHODS: We enrolled 45 patients hospitalized for COVID-19 (either vaccinated or not against SARS-CoV-2). Clinical and laboratory data were collected, and brachial artery flow-mediated dilation (FMD) was evaluated. Subjects without COVID-19 were used as the control group. RESULTS: There was no difference in age (64.7 ± 7.5 years vs. 61.2 ± 11.1 years vs. 62.4 ± 9.5, p = 0.28), male sex (49% vs. 60% vs. 52%, p = 0.71), control subjects, vaccinated, and unvaccinated subjects with COVID-19, respectively. Of the patients with COVID-19, 44% were vaccinated against SARS-CoV-2. Unvaccinated COVID-19 patients had significantly impaired FMD compared to vaccinated COVID-19 patients and Control subjects (2.05 ± 2.41 % vs. 7.24 ± 2.52% vs. 7.36 ± 2.94 %, p <0.001). Importantly, post hoc tests revealed that unvaccinated COVID-19 patients had significantly impaired FMD from both Vaccinated COVID-19 subjects (p <0.001) and from Control subjects (p <0.001). There was no difference in FMD between the control group and the vaccinated COVID-19 group (p = 0.99). CONCLUSION: Hospitalized patients with COVID-19 present endothelial dysfunction in the acute phase of the disease. Endothelial function in unvaccinated patients with COVID-19 is impaired compared to control subjects as well compared to vaccinated patients with COVID-19. Vaccinated hospitalized subjects with COVID-19 do not show endothelial dysfunction, strengthening the protective role of vaccination against SARS-CoV-2.


Subject(s)
COVID-19 , Vascular Diseases , Humans , Male , Middle Aged , Aged , SARS-CoV-2 , COVID-19/prevention & control , Vaccination
7.
Curr Vasc Pharmacol ; 20(4): 321-325, 2022.
Article in English | MEDLINE | ID: covidwho-1847039

ABSTRACT

Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome Coronavirus- 2 (SARS-CoV-2), has caused a global pandemic with high morbidity and mortality. The presence of several comorbidities has been associated with a worse prognosis, with chronic kidney disease being a critical risk factor. Regarding COVID-19 complications, other than classical pneumonia and thromboembolism, acute kidney injury (AKI) is highly prevalent and represents a poor prognostic indicator linked to increased disease severity and mortality. Its pathophysiology is multifactorial, revolving around inflammation, endothelial dysfunction, and activation of coagulation, while the direct viral insult of the kidney remains a matter of controversy. Indirectly, COVID-19 AKI may stem from sepsis, volume depletion, and administration of nephrotoxic agents, among others. Several markers have been proposed for the early detection of COVID-19 AKI, including blood and urinary inflammatory and kidney injury biomarkers, while urinary SARS-CoV-2 load may also be an early prognostic sign. Concerning renal replacement therapy (RRT), general principles apply to COVID-19 AKI, but sudden RRT surges may mandate adjustments in resources. Following an episode of COVID-19 AKI, there is a gradual recovery of kidney function, with pre-existing renal impairment and high serum creatinine at discharge being associated with kidney disease progression and long-term dialysis dependence. Finally, kidney transplant recipients represent a special patient category with increased susceptibility to COVID- 19 and subsequent high risk of severe disease progression. Rates of mortality, AKI, and graft rejection are significantly elevated in the presence of COVID-19, highlighting the need for prevention and careful management of the disease in this subgroup.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , COVID-19/complications , SARS-CoV-2 , Pandemics , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Disease Progression
8.
Rheumatol Int ; 42(5): 759-770, 2022 05.
Article in English | MEDLINE | ID: covidwho-1680770

ABSTRACT

Vasculitides, a form of inflammatory autoimmune disease targeting the vessels, constitute an entity with significant morbidity and mortality. Infections have long been associated with vasculitides as a result of the incident immunosuppression following treatment induction and maintenance. Several microbial pathogens have been described as etiologic factors of infections in this patient population according to the type of vessels affected. Intense research has also been recently conducted in the interplay between vasculitides and certain viral infections, namely human immunodeficiency virus and severe acute respiratory syndrome coronavirus 2. Of note, a plethora of scientific evidence is available regarding the role of infections as triggering factors for vasculitides. Among the main mechanisms implicated in this direction are the activation of B and T cells, the direct endothelial insult, the immune complex-mediated vascular injury, and the cell-mediated, type IV hypersensitivity vessel damage. Therefore, this review aims to summarize all the available evidence concerning this bidirectional interplay between infections and vasculitides.


Subject(s)
Autoimmune Diseases , COVID-19 , HIV Infections , Vasculitis , Antigen-Antibody Complex , Autoimmune Diseases/complications , COVID-19/complications , HIV Infections/complications , Humans , Vasculitis/etiology
9.
Biomedicines ; 10(2)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1649346

ABSTRACT

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and the resulting coronavirus disease-19 (COVID-19) have led to a global pandemic associated with high fatality rates. COVID-19 primarily manifests in the respiratory system as an acute respiratory distress syndrome following viral entry through the angiotensin-converting enzyme-2 (ACE2) that is present in pulmonary epithelial cells. Central in COVID-19 is the burst of cytokines, known as a "cytokine storm", and the subsequent widespread endothelial activation, leading to cardiovascular complications such as myocarditis, arrhythmias, and adverse vascular events, among others. Genetic alterations may play an additive, detrimental role in the clinical course of patients with COVID-19, since gene alterations concerning ACE2, major histocompatibility complex class I, and toll-like receptors may predispose patients to a worse clinical outcome. Since the role of inflammation is quintessential in COVID-19, pharmacologic inhibition of various signaling pathways such as the interleukin-1 and -6, tumor necrosis factor-alpha, interferon gamma, Janus kinase-signal transducer and activator of transcription, and granulocyte-macrophage colony-stimulating factor may ameliorate the prognosis following timely administration. Finally, frequently used, non-specific anti-inflammatory agents such as corticosteroids, statins, colchicine, and macrolides represent additional therapeutic considerations.

10.
Front Biosci (Schol Ed) ; 13(2): 202-207, 2021 12 03.
Article in English | MEDLINE | ID: covidwho-1559317

ABSTRACT

COVID-19, provoked by SARS-CoV-2, constitutes a global health issue with high rates of mortality. The presence of diabetes mellitus is associated with severe coronavirus COVID-19 as it is related to increased death rates in patients admitted to the intensive care unit. Acute kidney injury is a frequent complication among patients hospitalized for COVID-19 and is met with high morbidity and mortality. Here, we present a case of a diabetic patient with acute kidney injury, metformin-associated lactic acidosis, and COVID-19. Lactic acidosis is a relatively rare but noteworthy complication of metformin use. However, the combination of those life-threatening situations could prove fatal for the patients despite optimal medical care.


Subject(s)
Acidosis, Lactic , Acute Kidney Injury , COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Acidosis, Lactic/chemically induced , Acute Kidney Injury/chemically induced , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/adverse effects , Metformin/adverse effects , SARS-CoV-2
11.
Curr Vasc Pharmacol ; 20(2): 168-177, 2022.
Article in English | MEDLINE | ID: covidwho-1528767

ABSTRACT

The role of vitamin D in maintaining a healthy cardiovascular (CV) and the renal system has received increasing attention. Low vitamin D levels are associated with the incidence of hypertension, cardiac remodeling, and chronic congestive heart failure. Low vitamin D levels also influence renal disease progression and albuminuria deterioration. Moreover, recent research indicates that vitamin D deficiency can be a potential risk factor for coronavirus disease-19 (COVID-19) infection and poorer outcomes. Data are inconclusive as to whether supplementation with vitamin D agents reduces CV disease risk or COVID-19 severity. Conversely, in patients with kidney disease, vitamin D supplementation is associated with an improvement in kidney function and albuminuria. This narrative review considers recent data on the effects of vitamin D on the CV and renal system, as well as its possible role regarding COVID-19 complications.


Subject(s)
COVID-19 , Vitamin D Deficiency , Albuminuria , Female , Humans , Kidney , Male , Vitamin D/therapeutic use , Vitamin D Deficiency/complications , Vitamin D Deficiency/diagnosis , Vitamin D Deficiency/drug therapy , Vitamins/adverse effects
12.
Int J Mol Sci ; 22(20)2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1470892

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular diseases are characterized by a dysregulated inflammatory and thrombotic state, leading to devastating complications with increased morbidity and mortality rates. SUMMARY: In this review article, we present the available evidence regarding the impact of inflammation on platelet activation in atherosclerosis. Key messages: In the context of a dysfunctional vascular endothelium, structural alterations by means of endothelial glycocalyx thinning or functional modifications through impaired NO bioavailability and increased levels of von Willebrand factor result in platelet activation. Moreover, neutrophil-derived mediators, as well as neutrophil extracellular traps formation, have been implicated in the process of platelet activation and platelet-leukocyte aggregation. The role of pro-inflammatory cytokines is also critical since their receptors are also situated in platelets while TNF-α has also been found to induce inflammatory, metabolic, and bone marrow changes. Additionally, important progress has been made towards novel concepts of the interaction between inflammation and platelet activation, such as the toll-like receptors, myeloperoxidase, and platelet factor-4. The accumulating evidence is especially important in the era of the coronavirus disease-19 pandemic, characterized by an excessive inflammatory burden leading to thrombotic complications, partially mediated by platelet activation. Lastly, recent advances in anti-inflammatory therapies point towards an anti-thrombotic effect secondary to diminished platelet activation.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Inflammation Mediators/metabolism , Atherosclerosis/metabolism , COVID-19/virology , Endothelium, Vascular/metabolism , Humans , Neutrophils/metabolism , Nitric Oxide/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , von Willebrand Factor/metabolism
13.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282515

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with excess mortality worldwide. The cardiovascular system is the second most common target of SARS-CoV-2, which leads to severe complications, including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism, as well as other major thrombotic events because of direct endothelial injury and an excessive systemic inflammatory response. This review focuses on the similarities and the differences of inflammatory pathways involved in COVID-19 and atherosclerosis. Anti-inflammatory agents and immunomodulators have recently been assessed, which may constitute rational treatments for the reduction of cardiovascular events in both COVID-19 and atherosclerotic heart disease.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/complications , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , COVID-19/complications , COVID-19/virology , Chemokines/metabolism , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Prognosis , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL